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Chemicals overview

https://www.statista.com/statistics/1310477/chlorine-market-volume-worldwide/
https://www.statista.com/statistics/1266378/global-ammonia-production/
https://www.methanol.org/wp-content/uploads/2019/09/Methanol-as-a-vessel-fuel-and-energy-carrier.pdf
https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf
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Biomass Coal Gas Oil Electricity Heat

81.32 Mt

144.0 Mt

• Responsible for 18% of industrial CO2 emissions.

• Not only decarbonization, but also defossilization is
necessary.

• Alongside 20 EJ of final energy consumption, feedstock 
consumption is equally significant

78.0 Mt
215.8 Mt

91.5 Mt

197.5 MtPE: Polyethylene

PP: Polypropylene

PVC: Polyvinyl chloride

https://www.statista.com/statistics/1310477/chlorine-market-volume-worldwide/
https://www.statista.com/statistics/1266378/global-ammonia-production/
https://www.methanol.org/wp-content/uploads/2019/09/Methanol-as-a-vessel-fuel-and-energy-carrier.pdf
https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf


What are the chemicals needed for on global level in 2020?

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jan/IRENA_Innovation_Renewable_Methanol_2021.pdf
https://www.essentialchemicalindustry.org/chemicals/chlorine.html
https://iea.blob.core.windows.net/assets/6ee41bb9-8e81-4b64-8701-2acc064ff6e4/AmmoniaTechnologyRoadmap.pdf
https://www.techsciresearch.com/news/4860-aromatics-market-to-surpass-76-billion-by-2025-techsci-research.html?utm_source=chatgpt.com

05.04.2025IER Universität Stuttgart 4

Motivation

• The principal application of ammonia is in the synthesis of urea, predominantly for use as a nitrogen-based 
fertilizer.

• Chlorine demand is primarily driven by the production of PVC plastics
• Methanol demand is increasing as a feedstock for olefin production
• Olefins serve as key precursors for the manufacture of PP, PE, and PVC plastics
• Aromatics are essential building blocks for fibers, paints, coatings, and pharmaceuticals
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25%

Methyl tert-
butyl ether 

11%
Gasoline 
blending

14%
Acetic acid

8%

Formaldehy
de

25%

Biodiesel
3%

Others
14%

Methanol demand

Urea
39%

Other nitrogen 
fertilizers

31%

Textiles
10%

Explosives
5%

Others
15%

Ammonia demand

PVC
30%

Pulp & 
Paper

5%

Solvents
24%

Water 
sanitation

5%

Inorganics
13%

Others
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13%

Chlorine demand

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2021/Jan/IRENA_Innovation_Renewable_Methanol_2021.pdf
https://www.essentialchemicalindustry.org/chemicals/chlorine.html
https://iea.blob.core.windows.net/assets/6ee41bb9-8e81-4b64-8701-2acc064ff6e4/AmmoniaTechnologyRoadmap.pdf
https://www.techsciresearch.com/news/4860-aromatics-market-to-surpass-76-billion-by-2025-techsci-research.html?utm_source=chatgpt.com


• Highest use for packaging

• Buildings & Construction along with vehicles

contribute to 29% of global plastics consumption as

of 2018
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Use of plastics in different sectors

Motivation

Packaging
31%

Building & 
construction

17%Vehicles
12%

Consumer 
products

10%

Clothing
6%

Electrical/electroni
cs

Other textile
3%

Tires
2%

Other*
15%

https://www.vecteezy.com/vector-art/9317087-water-bottle-icon-logo-vector-illustration-plastic-bottle-symbol-template-for-graphic-and-web-design-collection

https://www.freepik.com/icon/plastic-bag_3506746

https://newtech-pipes.com/advantages-of-pvc-pipes/

https://www.statista.com/statistics/1002055/plastic-consumption-share-worldwide-by-application

PE & PP plastics PVC plastic

https://www.vecteezy.com/vector-art/9317087-water-bottle-icon-logo-vector-illustration-plastic-bottle-symbol-template-for-graphic-and-web-design-collection
https://www.freepik.com/icon/plastic-bag_3506746
https://newtech-pipes.com/advantages-of-pvc-pipes/
https://www.statista.com/statistics/1002055/plastic-consumption-share-worldwide-by-application


Global plastic waste flow in 2019

Source: OECD Global Plastics Outlook Database, https://doi.org/10.1787/c0821f81-en 05.04.2025 6
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• Currently, only 9% of plastic waste is 
recycled

• Over 20% is mismanaged, contributing 
to accumulation in open dumps and 
aquatic environments

• A comparable proportion is 
incinerated, resulting in significant air 
pollutant emissions

• Higher rate of recycling can reduce
energy consumption and emissions as
well

https://doi.org/10.1787/c0821f81-en


• The global chemical sector is responsible for 1500 Mt of CO2 in 2018

• The global feedstock demand is currently fossil dominated and needs to be switched as well

• Plastic mismanagement is the main environmental problem

• Feedstock demand can be lowered by keeping materials in the loop -> circular economy

• Lowering the demand by material efficiency measures can help

• Chemical and mechanical plastics recycling can help to solve both, environmental and climate issues

Challange
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IER Universität Stuttgart https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf

https://iea.blob.core.windows.net/assets/9e3a3493-b9a6-4b7d-b499-7ca48e357561/The_Future_of_Hydrogen.pdf


ETSAP-TIAM model
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Overview
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ETSAP-TIAM model

• Cost minimization

• Detailed process oriented
bottom-up energy system
model

• 16 world regions

• Time horizon: 2018-2100

• Base Year: 2018

• 12 time slices

• Perfect foresight



Reference energy system of TIAM 

Lippkau et. al, https://doi.org/10.1007/978-3-031-58897-6_11 05.04.2025IER Universität Stuttgart 10

ETSAP-TIAM model

• Modelling primary energy to
final energy

• 5 end use sectors covered: 
industry, commercial, residential, 
transport and agriculture

• Over 4000 technological
processes to represent the global 
energy system

• Cost optimal solution for energy
and energy services based on 
exogenous demands

• Investigation of climate policy on 
the energy system

https://doi.org/10.1007/978-3-031-58897-6_11


• Detailed process oriented modelling of production pathways

• Consideration of energetic and non-energy related as well as process emissions 

• Economically and ecologically evaluated materials and products

• Implementation of overall recycling strategies and recycling rates

• Barriers in circular economy are captured in the model as well

Modelling of circular economy and material efficiency in TIAM
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ETSAP-TIAM model



Main chemical sector: Detailed overview for methanol, chlorine, olefins and plastics

05.04.2025IER Universität Stuttgart 12

ETSAP-TIAM Model



Extended main chemical sector with recycling pathways for plastics
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ETSAP-TIAM Model
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Scenario Description

CO2 budget in reaching Net-Zero Plastic waste and recycling rates

Low-recycling

420 Gt until 2100 

• Low recycling rates from 2019 
until 2100

• High hydrogen needed for
decarbonization

Ambitious recycling • Ambitious recycling rates from
9% in 2018 to 60% until 2100.

• Less plastic waste in the
environment

Scenario definition

[1] IPCC Climate Change 2021 The Physical Science Basis 2021
[2] https://www.oecd.org/en/publications/global-plastics-outlook_aa1edf33-en.html
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ETSAP-TIAM Model

H2

https://www.oecd.org/en/publications/global-plastics-outlook_aa1edf33-en.html


Scenario analysis results
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Global Ammonia and Chlorine Production

Scenario analysis results
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ICL|Existing Diaphragm Mercury-cell

Membrane Membrane with ODC

• Shifting from SMR and 
coal gasification to P2A 
in ammonia production

• Membrane with ODC 
for chlorine production 
has the highest 
efficiency but no 
hydrogen output

• For both materials 
electrification is the 
cost optimal way to 
decarbonize 

P2A Power to Ammonia
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Scenario analysis results
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• Primary production remains the same 
technology with higher efficiency

• The higher availability of plastic scrap 
reduced the polymerization route by:

• 2050
• 29 Mt for PP
• 48 Mt for PE

• 2100
• 48 Mt for PP
• 130 Mt for PE
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Global Methanol Production

Scenario analysis results

• Methanol demand is rising caused by 
endogenous demand for olefines and 
exogenous demand as well

• Fossil dominated in 2018

• Promoting ambitious recycling could 
significantly lower the growth in 
methanol demand, particularly from 
technologies such as P2M and 
methanol synthesis
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-245 Mt

-229 Mt



Feedstock Chemicals
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Scenario analysis results
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Other Oil Naphtha

Hydrogen Gas

Coal

• The feedstock demand is mainly driven
by ammonia and methanol

• Tremendous transition to fossil-free
feedstock carriers in 2050

• Lowering the demand in methanol
because of recycling lowers the
demand in overall feedstock by 5900 PJ 
in 2100

• Long lifetimes of steam crackers result
in long usage of fossil feedstock

-5900 PJ

-3100 PJ
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Global Final Energy Consumption (FEC)

Scenario analysis results
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• Starting with high shares of 
fossil energy mainly for heat 
supply

• Electricity becomes the 
dominant energy carrier for 
the global Industry 

• Hydrogen needed for high 
temperature processes

• Recycling causes a slight 
decrease in final energy 
consumption



Global net electricity generation
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Scenario analysis results
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• Electricity mix is fossil dominated in 
2018

• The electricity sector does not only need 
to get fossil free, but also produce final 
energy for other sectors which leads to 
a demand rise

• Wind and solar PV becomes the 
dominant production routes

• Biomass becomes important for 
negative emissions

-3100 TWh



Global CO2 Emissions
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Scenario analysis results
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• Starting 2018 the electricity sector 
has the highest emissions due to 
high shares of coal and gas

• Biomass becomes an important 
energy carrier for both electricity 
and BECCS

• Transport and industry can 
drastically reduce the emissions by 
using technologies relying on 
electricity

• Negative emissions are needed to 
meet the CO2 budget



• 1% more recycling leads up to 115 PJ of less demand in hydrogen for feedstock

• As steam crackers have a enormous lifetime the transition to hydrogen in 2030-2050 is very important to 

achieve net zero in the long run

• Trade links need to be established in order to be able to switch to fossil free feedstock

• Chemical recycling is a promising technology but given the current data too expensive in comparison to 

MTO and MTA

• If chemical recycling becomes cost competitive, the remaining stock of steam crackers can be used with 

pyrolysis oil

• Ambitious recycling can reduce the cumulative (2018-2100):

• hydrogen feedstock demand by 225 EJ

• Electricity demand by 43000 TWh
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Conclusion
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Next steps: implementing endogenous material efficiency

Outlook

• Passenger cars and buildings will be considered as examples 

for material inputs for plastics.

• Defining survival rates in the model will determine when 

plastics become available for recycling

• Material efficiency strategies like higher lifetimes and higher 

recycling rates will be modelled to investigate the complete 

effect on energy consumption. 
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Thank you!

E-Mail

Telefon +49 (0) 711 685 -

Fax +49 (0) 711 685 -

Universität Stuttgart

Heßbrühlstr. 49a, 70565 Stuttgart

Felix Lippkau

87870

87873

Systemanalytische Methoden und Wärmemarkt

felix.lippkau@ier.uni-stuttgart.de



Appendix
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ETSAP-TIAM Model



Chemical sector in the model: Brief overview
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ETSAP-TIAM Model

MTA: Methanol to Aromatics

MTO: Methanol to Olefines

P2A: Power to Ammonia


